Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments.

نویسندگان

  • P Sampath
  • T D Pollard
چکیده

We used electron microscopy to measure the effects of cytochalasins, phalloidin, and pH on the rates of elongation at the barbed and pointed ends of actin filaments. In the case of the cytochalasins, we compared the effects on ATP- and ADP-actin monomers. Micromolar concentrations of either cytochalasin B (CB) or cytochalasin D (CD) inhibit elongation at both ends of the filament, about 95% at the barbed end and 50% at the pointed end, so that the two ends contribute about equally to the rate of growth. Half-maximal inhibition of elongation at the barbed end is at 0.1 microM CB and 0.02 microM CD for ATP-actin and at 0.1 microM CD for ADP-actin. At the pointed end, CD inhibits elongation by ATP-actin and ADP-actin about equally. At high (2 microM) concentrations, the cytochalasins reduce the association and dissociation rate constants in parallel for both ADP- and ATP-actin, so their effects on the critical concentrations are minimal. These observations confirm and extend those of Bonder and Mooseker [Bonder, E. M., & Mooseker, M. S. (1986) J. Cell Biol. 102, 282-288]. The dependence of the elongation rate on the concentration of both cytochalasin and actin can be explained quantitatively by a mechanism that includes the effects of cytochalasin binding to actin monomers [Godette, D. W., & Frieden, C. (1986) J. Biol. Chem. 261, 5974-5980] and a partial cap of the barbed end of the filament by the complex of ADP-actin and cytochalasin.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of cytochalasin and phalloidin on actin

C YTOCHALASINS and phalloidins are two groups of small, naturally occurring organic molecules that bind to actin and alter its polymerization. They have been widely used to study the role of actin in biological processes and as models for actin-binding proteins. Functionally , cytochalasins resemble capping proteins, which block an end of actin filaments, nucleate polymerization, and shorten fi...

متن کامل

Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells.

The effects of different concentrations of the actin-disrupting drug cytochalasin D on tight junction permeability and distribution of actin filaments in MDCK epithelial cells were examined. Consistent with previous studies, 2 micrograms/ml cytochalasin D caused a significant decrease in transepithelial resistance, indicative of an increase in tight junction permeability. Surprisingly, increasi...

متن کامل

Proximity relationships and structural dynamics of the phalloidin binding site of actin filaments in solution and on single actin filaments on heavy meromyosin.

Distance relationships between phalloidin binding sites on F-actin have been investigated using fluorescence resonance energy transfer (FRET) techniques in solution and on single F-actin filaments bound to heavy meromyosin (HMM). Filaments saturated with an equimolar concentration of fluoresceinisothiocyanatophalloidin (FITC-ph) as the donor and tetramethylrhodamineisothiocyanatophalloidin (TRI...

متن کامل

Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara

Various investigations have suggested that cytoplasmic streaming in characean algae is driven by interaction between subcortical actin bundles and endoplasmic myosin. To further test this hypothesis, we have perfused cytotoxic actin-binding drugs and fluorescent actin labels into the cytoplasm of streaming Chara cells. Confirming earlier work, we find that cytochalasin B (CB) reversibly inhibit...

متن کامل

Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons.

We have characterized the interaction of bovine pancreatic deoxyribonuclease I (DNase I) with the filamentous (F-)actin of red cell membrane skeletons stabilized with phalloidin. The hydrolysis of [3H]DNA was used to assay DNase I. We found that DNase I bound to a homogenous class of approximately equal to 2.4 X 10(4) sites/skeleton with an association rate constant of approximately 1 X 10(6) M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 1991